COMPOSITION OF THE ESSENTIAL OIL OF *Indigofera microcarpa* FROM THE NORTHEAST OF BRAZIL

A. M. C. Arriaga, M. Andrade-Neto, G. T. Malcher, T. B. M. Gomes, J. N. Vasconcelos, A. C. P. Rodrigues, M. C. F. de Oliveira, and G. M. P. Santiago²

UDC 547.913

Indigofera microcarpa Desv. (Fabaceae) is an endemic herb, widely distributed in the Northeast of Brazil, where it is popularly known as "anil do mato" and used as a forage producer [1]. Previous phytochemical investigations of leaves from *Indigofera microcarpa* revealed the presence of 3-aryl-3-methylbenzofurans with antimicrobial activity [2, 3]. However, to the best of our knowledge, there are no studies on its essential oil composition.

The aerial parts of *Indigofera microcarpa* Desv. yielded 0.15% (v/w) of a pale yellowish oil with an aromatic odor. The essential oil from aerial parts of *I. microcarpa* Desv. was analyzed using GC and GC-MS. The identified components, the percentage composition of each constituent, and the retention indices are listed in Table 1. The compounds are arranged in order of elution on a DB-5 column. Nine constituents were identified in the oil of leaves from *I. microcarpa* representing 99.5% (area %) of the total oil fraction. The major constituents were β -caryophyllene (56.0%) and humulene (25.1%) The results indicate that its chemical composition was essentially characterized by a large percentage of sesquiterpenes hydrocarbons (83.7%) and devoid of monoterpenes.

Plant Material. *Indigofera microcarpa* Desv. was collected in February 2005 at the flowering stage in Pentecoste-Ceara State (Northeast of Brazil). A voucher specimen, No. 34816, has been deposited in the Herbarium Prisco Bezerra (EAC) from the Universidade Federal do Ceara- Brazil.

Extraction. Fresh leaves, 510 g, of *I. microcarpa* Desv. were cut into small pieces and hydrodistilled in a Clevenger-type glass hydrodistillation apparatus for 4 h to produce oil in 0.15 % yield on a fresh weight basis. The sample oil, which had a pale yellowish color, was dried over sodium sulfate and stored in sealed glass vials at a low temperature before analysis.

Gas Chromatography (GC). GC analysis was performed on a Shimadzu GC-17A gas chromatograph equipped with flame ionization detector using a non-polar DB-5 fused silica capillary column (30 m \times 0.25 mm i.d., 0.25 μ m film thickness). Hydrogen was used as carrier gas at a flow rate of 1 mL/min and 30 psi inlet pressure; split ratio 1:30. The column temperature was programmed from 35°C to 180°C at a rate of 4°C/min, then heated at a rate of 17°C/min to 280°C and held isothermal for 10 min; both injector temperature and detector temperature were 250°C.

Gas Chromatography-Mass Spectrometry (GC-MS). The GC-MS analysis was carried out on a Hewlett-Packard Model 5971 GC/MS using a non-polar DB-5 fused silica capillary column (30 m \times 0.25 mm i.d., 0.25 μ m film thickness); carrier gas helium, flow rate 1 mL/min, with split mode. The injector temperature and detector temperature were 250°C and 200°C, respectively. The column temperature was programmed from 35°C to 180°C at 4°C/min and then 180°C to 250°C at 10°C/min. Mass spectra were recorded from 30–450 m/z. Individual components were identified by matching their 70 eV mass spectra with those of the spectrometer data base using the Wiley L-built library and the other two computer library MS searches using retention indices as a preselection routine [4, 5], as well as by visual comparison of the fragmentation pattern with those reported in the literature [6, 7].

The chemical components identified in the essential oil of *I. microcarpa* Desv. are presented in Table 1.

¹⁾ Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Curso de Pos-Graduacao em Quimica Organica; Cx. Postal 12200, CEP 60021-970, Fortaleza-Ceara-Brazil, fax:+5585-33669782, e-mail: angelamcarriaga@yahoo.com.br; 2) Departamento de Farmácia, Universidade Federal do Ceara, Rua Capitao Francisco Pedro 1210, CEP 60430-370, Fortaleza-Ceara-Brazil, e-mail: gil@ufc.br. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 193-194, March-April, 2008. Original article submitted December 11, 2006.

TABLE 1. Chemical Composition of the Essential Oil from Leaves of Indigofera microcarpa Desv., %

Constituents	RI	Leaves oil, %
β -Bourbonene	1388	0.7
β -Caryophyllene	1419	56.0
α-Humulene	1455	25.1
α-Selinene	1498	0.5
δ -Cadinene	1523	1.4
Germacrene D-4-ol	1576	1.0
Caryophyllene oxide	1583	4.7
Humulene epoxide II	1608	1.4
(E)-Sesquilavandulol	1633	8.7
Total		99.5

RI - retention indices on DB-5 capillary column.

ACKNOWLEDGMENT

The authors are indebted to Prof. F. S. Cavalcante and Prof. E. P. Nunes for botanical identification, and to Brazilian agencies FINEP, CAPES, CNPq, and FUNCAP for financial support.

REFERENCES

- 1. M. P. Correa, *Dicionario de Plantas Uteis do Brasil e das Exoticas Cultivadas*, Ministerio da Agricultura, I.B.D.F., Brasilia, 1984.
- 2. M. A. M. Souza, L.W. Bieber, J. F. Mello, M. S. B. Cavalcanti, A. Silva-Filho, and S. C. Nascimento, *Fitoterapia*, **62**, 514 (1991).
- 3. M. A. Moraes e Souza, L.W. Bieber, A. A. Chiappeta, G. M. Maciel, J. F. De Melo, F. D. Monache, and I. Messana, *Phytochemistry*, **27**, 1817 (1988).
- 4. J. W. Alencar, A. A. Craveiro, F. J. A. Matos, and M. I. L. Machado, *Quim. Nova*, 13, 282 (1990).
- 5. A. A. Craveiro, F. J. A. Matos, and J. W. Alencar, J. Nat. Prod. 47, 890 (1984).
- 6. E. Stenhagen, S. Abrahamson, and F. W. McLafferty, *Registry of Mass Spectra Data*, John. Wiley & Sons, New York, NY, 1974.
- 7. R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Trap Mass Spectrometry*, Allured Publishing Co., Carol Stream, IL., 2001.